H(t)=-16t^2+250t+3

Simple and best practice solution for H(t)=-16t^2+250t+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+250t+3 equation:



(H)=-16H^2+250H+3
We move all terms to the left:
(H)-(-16H^2+250H+3)=0
We get rid of parentheses
16H^2-250H+H-3=0
We add all the numbers together, and all the variables
16H^2-249H-3=0
a = 16; b = -249; c = -3;
Δ = b2-4ac
Δ = -2492-4·16·(-3)
Δ = 62193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-249)-\sqrt{62193}}{2*16}=\frac{249-\sqrt{62193}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-249)+\sqrt{62193}}{2*16}=\frac{249+\sqrt{62193}}{32} $

See similar equations:

| -2(x-5)=6(2- | | 8x+5x+3=15x-17 | | x-2/4x+1=x+5/x | | 10-5z=-5 | | 0.714285714(k+5)=-7 | | 2x+10=8+3x | | 2(4x-6)/4+5=-6+5x | | 3/2p-14=13 | | 3k-2=-2k-2 | | 3x-33)+(2x+26)=180 | | 1/2​ r−3=3(4−3/2r) | | 23=x/6+5 | | 3m-31/20=1 | | (12.3+5.013)d=15.302 | | -(5x+11)=4(x+4) | | 9x+12=3x-8 | | 12+6a=2(3a-8) | | 8(-3d+2)=80 | | 5×+2(x+1)=23 | | 6+6a=16+4a | | w=20.20-8.95 | | 2/7=1/3=a | | 150-3.5x=130-3x | | 3f-7=45 | | 2l+2(l-3)=60 | | 8.95×1.50x=26.955 | | 0.25(x-16)=0.5x+3-0.25x-7 | | 8.95×1.50x=26.95 | | 3x-60=-20x-21 | | 7-4x=2x-4x-3 | | n/10=-7/10 | | 4x-8=+16 |

Equations solver categories